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SUMMARY 

A formally third-order accurate finite volume upwind scheme which preserves monotonicity is constructed. It is 
based on a third-order polynomial interpolant in Leonard’s normalized variable space. A flux limiter is derived 
using the fact that there exists a one-to-one map between normalized variable and TVD spaces. This scheme, 
which is relatively simple and quite compact, is implemented in a staggered general co-ordinates finite volume 
algorithm including the standard k - ~  model and applied to the turbulence transport equations. A number of test 
problems demonstrate the utility of the proposed scheme. It is shown that in cases where turbulence convection is 
dominant, the application of a higher-order monotone convection scheme to the turbulence equations leads to 
results which are more accurate than those obtained using the first-order upwind scheme. 
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1. INTRODUCTION 

Approximation of convective transport is still one of the unresolved issues of CFD. The main problem is 
to combine accuracy, stability, monotonicity preservation, economy and algebraic simplicity. In 
principle, convection may be discretized by central differences because of second-order accuracy. 
However, if the mesh Peclet number is sufficiently large, non-physical numerical oscillations called 
‘wiggles’ may occur and thus accuracy and stability of the solution process may be impaired. In order to 
avoid the instability and non-monotonicity associated with central differencing, first-order upwind 
differencing is often used. The stability inherent in this scheme has made it popular. Unfortunately, this 
method introduces an error, which has the form of a viscous term with artificial viscosity. In high- 
Reynolds-number flows this artificial viscosity dominates the physical viscosity and the solution 
produced is much smoother than the correct one. Furthermore, because the interpolation used in 
evaluating unknown fluxes is between sets of nodes along grid lines, significant numerical errors arise 
when the flow direction is not aligned with those lines. Hence it is necessary to minimize numerical 
diffusion (both truncation error and cross-flow diffusion), especially in situations when turbulence 
model deficiencies have to be identified. Grid refinement is the traditional way to reduce the numerical 
diffusion errors. However, improvement in accuracy by grid refinement is not always possible, 
particularly in three-dimensional applications, owing to excessive storage and run time requirements. 

Because of the disadvantages of the first-order upwind approximation mentioned above, a number of 
schemes which retain the stability of first-order upwind differencing while providing higher-order 
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accuracy or leading to less numerical diffusion have been proposed. The most well-known and often 
employed schemes with these properties are the second-order linear upwind scheme (LUDS), the third- 
order upstream-weighted quadratic interpolation scheme (QUICK) proposed by Leonard' and the skew 
upwind differencing scheme (SUDS) suggested by Raithby.2 

Like central schemes, all higher-order linear upwind schemes are non-monotone. This means that 
they may give rise to unphysical oscillations, typically in the vicinity of steep gradients of a quantity to 
be resolved. For linear and weakly coupled equations this feature is no more than a small optical defect. 
However, in strongly coupled and non-linear situations at high Reynolds numbers these numerical 
oscillations tend to grow in an unbounded manner, which prevents the solutions from converging. This 
tendency must be regarded as a serious limitation with respect to the turbulence model equations, which 
are generally highly non-linear, and the coupling between these equations is often strong. It is for this 
reason that the convective transport of turbulence, occurring e.g. in k-&-type models, has been 
approximated with highly stable first-order upwind schemes in numerous publications. Otherwise, 
physically and numerically undesirable features such as negative turbulent kinetic energy may arise in 
high-gradient regions. Hence, although the use of higher-order schemes is essential whenever 
turbulence convection has to be accurately resolved, monotonicity must be ensured. 

Over the past two decades there have been many attempts to devise higher-order convection schemes 
which do not exhibit spurious oscillations. Some well-known types of such schemes have been 
developed and evaluated for practical flow computations. In 1983 Harten3 laid a rigorous mathematical 
foundation for the construction of non-linear higher-order upwind schemes which preserves mono- 
tonicity, based on the total variation diminishing (TVD) concept. Such schemes cannot create new local 
extrema, whereas the value of an existing local minimum cannot be decreased and that of a local 
maximum cannot be increased. Different TVD schemes arise by introducing different limiters. Sweby4 
has derived some constraints for a second-order accurate scheme to be TVD and has also introduced a 
TVD diagram which encloses a wide range of flux limiters such as those of Van Leer, Roe ('superbee' 
limiter) and Chakravarthy and Osher. An overview of TVD schemes with several flux limiters can be 
found in Reference 5 and recently in Reference 6. TVD schemes are used widely in compressible Euler 
and Navier-Stokes codes for capturing shocks and flow discontinuities and have been shown to give 
satisfactory results in many cases. 

Another method which also removes unphysical numerical oscillations from the solutions of higher- 
order schemes is based on switching from one scheme to another controlled by a convection 
boundedness criterion, proposed by Gaskell and L ~ u . ~  The construction is based on devising non- 
linear characteristics in the so-called normalized variable (NV) diagram.' Examples are the SHARP 
scheme formulated by Leonard' and the SMART scheme of Gaskell and L ~ u . ~  Both are monotone 
versions of the QUICK scheme. The construction of the former scheme is based on exponential NV 
characteristics, whereas the latter is constructed with piecewise linear NV characteristics. Both schemes 
have been shown to give higher-order accurate oscillation-free solutions of simple linear transport 
problems. However, a disadvantage of these schemes is the fact that they contain many conditional 
statements and are therefore non-vectorizable. Furthermore, they have a high computational cost in 
comparison with other higher-order schemes. For example, according to Tamamidis and Assanis: the 
SHARP scheme requires about seven times more CPU time than QUICK for a simple test problem on a 
100 x 100 grid. 

The method of constructing a monotone scheme presented in this paper is based on the fact that the 
NV characteristics can be recast in terms of flux limiters.' First a polynomial NV characteristic of order 
three in the normalized variable diagram is constructed in order to obtain a third-order accurate 
monotone scheme in the finite volume formulation. Using the unique relationship between NV and 
TVD spaces, this scheme is rewritten as a flux-limited scheme called ISNAS (Interpolation Scheme 
which is Non-oscillatory for Advected Scalars). The reason for employing the TVD rather than NV 
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formalism is that it can be easily implemented by means of the deferred correction approach using flux 
limiters without enlarging a stencil. 

In what follows, a short outline of the mathematical formulation of the ISNAS scheme is given. This 
scheme is implemented in the ISNAS (Information System for the Navier-Stokes eqfiations) code" 
applicable to laminar and turbulent flows in arbitrarily shaped domains, which is based on a co-ordinate- 
invariant finite volume discretization on a staggered non-orthogonal grid of the incompressible Navier- 
Stokes equations. Turbulence is modelled by the standard k-c eddy viscosity closure. Results are 
presented which demonstrate the scheme's performance in linear and non-linear cases. 

2. MATHEMATICAL FORMULATION 

2. I .  Fundamentals of Leonardk normalized variable concept 

We consider advective transport of a scalar field, which can be written as 

-- h a  9 -0, a ~ ( 1 , 2  , . . . ,  d } ,  
h a  

where 4 is the scalar field, u, is the velocity component of a flow field in the x,-direction, d is a given 
space dimension and the summation convention is used. Note that (1) can easily be extended to general 
co-ordinates, but for the sake of clarity we restrict ourselves to the Cartesian tensorial form. Moreover, 
without loss of generality, d =  2. Discretization of (1) is carried out using the standard finite volume 
technique on a staggered grid as depicted in Figure 1 : 

where Ax, is the grid size of the control volume in the x,-direction. To simplify the following 
consideration, we take Ax, = Ax2. 

j+ 1 I 

i+ln i+l 

t j- 1 

i-1 i-ln i 
Figure I .  Two-dimensional staggered finite volume 
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Approximation of the face values of 4 can be done in several ways. A widespread approach is the first- 
order upwind method (for the evaluation of 4( i+ l / z , , ) ,  for example): 

This scheme is first-order accurate and monotone. However, it produces excessive numerical 
diffusion and can often not be employed. Another method is to approximate the face value 4(i+1,2,j) 

with Leonard's QUICK scheme': 
1 

4 ( i + l / z , j )  = j ( $ ( i . j )  + +(i+l , j ) )  - 8 ( 4 ( i - I , j )  - W ( i . j )  + $(i+l , j ) )> if u l I ( i + l / z , j ) > O *  ( 5 )  

$(i+I/z,j) = ; ( 4 ( i , j )  + $(i+l , j )I  - i ( b ( i , j )  - W ( i + l , j )  + 4 ( i + 2 , j ) ) -  if u I I ( i + l / ~ , j ) < O .  (6) 

This scheme is third-order accurate in the case of a uniform grid, but it is non-monotone, so that for 
flows with sharp gradients it may produce oscillatory solutions. 

In order to construct a higher-order scheme which enforces monotonicity, Leonard' introduced 
variable normalization, while Gaskell and Lau7 proposed a convection boundedness criterion. We shall 
give a brief description. We consider the control volume surrounding the point (i, J] as shown in Figure 1 
and assume that u, l(i+l,2,j) > 0. A normalized variable (NV)d at the point ( i+ k, J> is defined as 

Hence $(i-l,j) = 0 and &i+l,,) = 1. With this definition, several upwind schemes can be rewritten in a 
more simplified form. For example, QUICK may be written as 

whereas the first-order upwind scheme in terms of normalized variables is simply 

Both schemes depend linearly on $ci,j!. This dependence is shown diagrammatically in Figure 2. The 
curves shown are called NV charactenstics. 

Using Taylor expansion, one can show that for any scheme based on linear or non-linear NV 
characteristics, the following two properties hold. 

Figure 2. NV diagram with two well-known characteristics 
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1. 

2. 

A scheme with an NV characteristic that passes through the point (i, 3 in the NV diagram is 
second-order accurate. 
A scheme with an NV characteristic that has a slope of : while passing through the point (i, i) is 
third-order accurate. 

For the construction of a monotone scheme we use the following important criterion formulated by 
Gaskell and Lau? 

Convection boundedness criterion 

Given a continuous or piecewise continuous NV characteristic 

f :  4(i.j) --* 4 ( i + 1 / 2 , j ) y  

the corresponding scheme is monotonicity-preserving if and only if 

(1) v$(i,j) E [o, 1 1 3  

(ii) v$(i,j) 6 [o, 1 1 7  

$ ( i , j )  G ($ ( i , j ) )G  1 

$ ( i + 1 / 2 , j )  = f ( $ ( i . j ) )  = $ ( i . j )  

(iii) f ( O ) = O  andf( l )=l .  

It is clear that the NV characteristic associated with a higher-order monotone scheme must be non- 
linear or piecewise linear. For example, the SMART scheme of Gaskell and Lau is based on piecewise 
linear NV characteristics, whereas Leonard constructed the SHARP scheme which is represented by a 
blend of piecewise linear and exponential NV characteristics. Note that SHARP does not fully obey the 
convection boundedness criterion (CBC). The next subsection gives a short outline of the construction 
of a third-order scheme which satisfies the above criteria. 

2.2. A third-order accurate interpolation scheme which is non-oscillatory for advected scalars 

The idea behind the construction of the third-order accurate ISNAS scheme is to derive a third-order 
polynomial which passes through the points (0, 0), (1, 1) and (i, i) while having a slope of: at (4, i). 
We find the third-order polynomial 

Hence the resulting NV characteristic which satisfies the above criteria reads 

This non-linear NV characteristic is shown in Figure 3. 
The corresponding flux-limited scheme is derived as follows. First, (10) is rewritten as 

4 ( i + 1 / 2 . j )  - - 6 (1 .( 1 )  ' + i ( 3 4 c i . j )  - 2$f i , j l ) (1  - $ ( i , j ) ) .  

In terms of unnormalized variables this equation (12)  simply reads 

4 ( i + 1 / 2 , j )  = + ( I . j )  + ~~(r ( i+ l ,2 , j ) ) (+ ( i+ , , j~  - 4(i.,))- 
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Figure 3 ,  NV characteristic associated with ISNAS scheme in CBC region 

where Y is a flux limiter to be derived and the limiter argument r(i+l/2,,) is the ratio of two consecutive 
solution gradients defined by 

Using (7), this ratio can be expressed in terms of normalized variables as 

From (1 2) and (1 5) we deduce the flux limiter 

r>O. 
? + 3 r  

Y ( r )  = ~ 

(1 + rl2 ' 
With (1 l), (1 3 )  and (1 5 )  it follows that for all r < 0, Y ( r )  = 0.  Hence the flux limiter associated with 
scheme (1 3), which is equivalent to (1 l), is given by 

The TVD diagram corresponding to the limiter (17) is given in Figure 4, which shows that Sweby's 
monotonicity preservation conditions4 are slightly violated, because "'(r) = 3 > 2 for r $ 0. This can be 
expected, because the convection boundedness criterion is weaker and thus more flexible than Sweby's 
TVD criterion. We also note that Y(  1) = 1, which is necessary for a scheme to be at least second-order 
accurate? Moreover, it can be shown for an arbitrary limiter Y that Y'( 1) = f is necessary and sufficient 
for third-order accuracy of the flux (see Appendix). Indeed, the slope of the ISNAS limiter (1 7) for r = 1 
is i. In conclusion, the proposed limiter has the advantage of being a smooth function of r for r > 0, so 
that it may offer better convergence behaviour. 

3 .  INVARIANT DISCRETIZATION AND NUMERICAL FRAMEWORK 

The incompressible Navier-Stokes equations and a transport equation for any scalar quantity 6 
(including turbulent quantities k and E )  are solved numerically using a finite volume technique in 
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Figure 4. F l u  limiter diagram for ISNAS limiter 

general boundary-fitted co-ordinates on a staggered grid. The governing equations have to be recast in a 
form in which both independent and dependent variables are invariant with respect to a change in co- 
ordinates. In this paper the invariant discretization of a transport equation for scalar 4 is outlined. 
Details of the discretization of the momentum equations can be found e.g. in Reference 1 1. 

Using tensor notation in general co-ordinates, the transport equation for scalar I$ is written as 

where p is the density, U" is the contravariant velocity component and S+ denotes a source term which 
may depend on 4 and U". Furthermore, K+ is a diffusion coefficient and gUB is the contravariant metric 
tensor defined as 

(19) g K f l  = a(") . 

where 

is the contravariant base vector with respect to the mapping 

T :  x = x ( 0 .  

Here x represents the Cartesian co-ordinates and 5 the boundary-conforming curvilinear co-ordinates. 
The mapping is assumed to be regular, i.e. the Jacobian of the transformation, denoted Jg, does not 
vanish. For convenience, equation (1  8) is written in the form 

where 

eol = PU"4 - K 4 g a P 4 , p .  (23) 

Furthermore, we introduce the local cell co-ordinates given by Figure 5 .  We have a uniform grid with 
unit mesh widths in &space. Discretization of (22) is obtained by integration over a finite volume Cl with 
centre ( i ,  J) using the identity 
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Figure 5. Local cell coordinates 

This yields 

The right-hand side of (22) is integrated using the midpoint rule: 

The discretization is completed by substituting (23) into (25) and approximating the cell face values 
(advection) and derivatives (diffusion) appropriately. Approximation of cell face derivatives has been 
carried out with second-order central differences. The advective cell face values are approximated by the 
first-order upwind scheme, which is corrected by adding an appropriate antidiffusive flux controlled by 
a limiter. For example, approximation of +(i+ I / 2 ,  j )  gives 

4 ( ; + 1 / 2 , j )  = 4 t i . j )  + t y l ( ' ~ + l / z , j ) ) ( & ( i + l , j )  - &(i . j ) )  if ' ;+1/2 , j )  209 (27) 

$ ( i + i / 2 , j )  = + ( i + l . j )  - t y ( ' ~ + I , z , j ) ) ( ~ ( i + l , j )  - 4 ( i . j ) )  if u i + l / 2 , j ) < O 7  (28) 

where 

Because "(r) is by definition non-linear, this scheme is implemented in a deferred correction manner: 

+ i Z ! / 2 . j )  = $2.;T;z.jj + ( + ~ ~ ~ / 2 , j ~  - 4:;1,2.j))7 (30) 

where n represents the time level and 'F' and 'H' indicate the first-order upwind and higher-order 
schemes respectively. The first-order upwind scheme for the evaluation of 4 at the point (i + 1/2,~), for 
example, is given by 

4 ( i + 1 / 2 , j )  = 3 [I  + s i g n ( I / ~ + , / z . j ) ) I ~ c i . , )  + 1 - ~ i g n ( ' ~ + l / , , j ~ ) I ~ c i + l , j ~ .  (31) 

The discretization of the transport equation results in the nine-point stencil presented in Figure 5 .  
Marching in time is done with the implicit Euler technique, whereas the pressure is obtained from a 

pressure correction equation derived from a combination of the continuity and momentum equations, as 
described by van Kim.'' The discretized set of equations is solved iteratively using the GMRES method. 
The standard k-e model in conjunction with wall functions" is employed for modelling turbulence. For 
further details see References I 1  and 14. 
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Figure 6. Flux limiter diagram for Minmod and SMART 

4. TEST PROBLEMS AND RESULTS 

To investigate the properties of the ISNAS scheme described in Section 2.2, two linear and two non- 
linear test cases have been examined. The first two cases involve advection dominance and steep 
gradients of the transported scalars, whereas in the last two cases the k--E model is employed, which is 
our primary interest. For comparison, the first-order upwind ( U D S ,  Y = 0), QUICK ( Y ( r )  = + a r), 
Roe’s ‘Minmod’ limiter4 and SMART7 are included. The Minmod limiter, which is known to be the 
most diffusive one, is given by 

Y ( r )  = minmod(r, 1) = max(0. min(r, l)), (32) 

whereas SMART is given by 

Y ( r )  = max(0, min(M, $ + ar, 2r)), hf = 4. (33) 

With a large value of M we obtain more accuracy near sharp gradients. However, in this paper the value 
is changed to M =  2, which gives much better convergence behaviour than the original SMART scheme. 
See Figure 6. 

4.1.  Unsteady rotation of a cone-shaped scalarjeld 

A two-dimensional solid body rotation test* is performed to investigate the accuracy, monotonicity 
and conservation behaviour of the five schemes discussed. A scalar cone field is advected around by a 
stationary velocity field: 

(x, y )  E [-1, 11 x [-1,11, 
a4 a4 a4 - + u - + v -  = 0, 
at ax ay 

with 

(u, v) = (-2ny, 274.  

The initial cone field is given by 

(34) 

(35) 

Also known as the Molenkamp test. 
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Figure 7. Contour plot of exact solution after one full rotation with levels lo-' + 0.1 ( n  - l ) , n  = 1,2,. . . , 10 

On the boundaries the following inflow conditions are imposed: 

More details can be found in Reference 15. 
Computations have been performed on an 80 x 80 grid and for accuracy reasons the Crank-Nicolson 

scheme has been chosen, in which the time step is taken sufficiently small to ensure monotonicity. Note 
that Crank-Nicolson is not applied to the deferred correction (30). The exact solution after one full 
rotation, which is identical with the Gaussian initial field (36), is presented in Figure 7 and the numerical 
results in Figure 8. It is clear that the solution obtained with the UDS scheme is extremely inaccurate. 
On the other hand, the monotone schemes and QUICK dramatically improve the results. Since the 
isoline 4 ( x ,  y, r )  = lop5 is also plotted, it is clear that none of the schemes produces this isoline 
accurately. 

Some quantities are measured in order to quantify the error of the five schemes. The L2-norm of the 
difference between the exact and numerical solutions is defined by 
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Figure 8. Contour plots of scalar property with levels + 0.1 (n - l ) ,  n = 1,2, .  . . , 10, obtained with various schemes on 
80 x 80 grid 
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where N is the number of grid points, whereas the &-norm of the solution error is defined as 

II A 4  llm= I4i.exact - 4i,numericall. 
. I .  

Furthermore, monotonicity and conservation of the schemes are examined respectively by 

and 

(39) 

More details on these quantities and the motivation for their use can be found in Reference 15, in which 
also an evaluation of a wide variety of upwind schemes for this specific problem is documented. The 
quantities are measured on three different grids: 20 x 20, 40 x 40 and 80 x 80. The measurements of 
these quantities for all schemes are summarized in Table I. 

Defining h as the maximal grid width and considering the ISNAS scheme, the solution errors behave 
in between O(h2) and O(h3) with respect to 11 A 4  11 2, while 11 A 4  [I o3 behaves O(h). Furthermore, the 
convergence of 11 A 4  11 tends to O(h3) for h 4 0. The same hold for SMART, which converges a little 
faster than ISNAS. Regarding the QUICK scheme, 11 A 4  11 behaves in between O(h) and O(h2), 
whereas 11 A 4  11 tends to O(h3) for h 4 0. In the case of Minmod the (1 A 4  11 convergence tends to 
O(h2). Clearly, as expected, UDS yields an O(h) convergence. Of the monotone schemes, SMARTyields 

Table I. Measured errors as function of grid size for several convection schemes 

Scheme 20 x 20 40 x 40 80 x 80 

UDS 4min 9.86 x 10-7 4.62 x lo-" 6.36 x 10-19 

II A 4  112 6.11 x 10-3 2.59 x 10-3 I .oi  x 10-3 

QUICK 4min -5.73 x 10-2 -1.97 x lo-' -2.10 10-4 
II - r m l  2.79 x lo-' 3.21 x 10-3 3.53 10-4 

II A 4  112 2.73 x 10-3 4.96 x 10-4 7.92 x 10-5 

Minmod 4min -3.16 x 10-5 -5.26 x lo-' -2.13 x 10-19 
11 - rmassl 4.10 x lo-' 1.21 x 10-2 3.13 x 10-3 

II A 4  112 4.35 x 10-3 I .20 x 10-3 2.32 x 10-4 

ISNAS 4min -6.46 x -9.33 x 10-10 -1.i6X 10-14 
I1 -rillass 4.44 x 10-3 I .39 x 10-3 2.24 x 10-4 

II A 4  I12 3.50 x 10-3 7.14 x 10-4 1.18 x 10-4 

11 - rmassI 2.17 x lo-' 3.13 x 10-3 3.52 x 10-4 
I1 A 4  Ilm 4.63 x lo- '  2.41 x lo-' 9.99 x 10-2 
I1 A 4  I12 3.00 x 10-3 5.47 x 10-4 8.62 x 10-5 

11 - r m w l  3.57 x 10-1 1.80 x 10-1 7.65 x 
II A 4  Ilm 8.12 x 10-1 7.73 x 10-1 6.46 x lo-' 

II A 4  Ilm 3.83 x lo-' 1.54 x lo-' 4.90 x lop2 

II A 4  Ilm 6.26 x 10-I 4.48 x lo- '  2.40 x lo- '  

II A 4  Ilm 5.25 x lo-' 3.02 x lo-' 1.36 x lo-' 

SMART 4min -1.40 x lo-* -1.45 x 10-10 - 1 . 8 4 ~  
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the smallest errors on all three grids, both in L2- and L,-norm, whereas QUICK has the best L2- and 
L -norms. 

Concerning the mass errors, these are mainly caused by the fact that at the inflow boundaries the exact 
fluxes are imposed, whereas at the outflow boundaries-mathematically correct-the fluxes are 
computed from the interior numerical solution. As a consequence, owing to discretization errors, the 
total net flux is not zero. Hence schemes which are strictly conservative do not show strictly 
conservation behaviour for this test case unless-mathematically incorrect-the exact fluxes are also 
imposed at outflow. According to Vreugdenhil and Koren,” a scheme has good mass conservation 
properties if the corresponding mass error behaves like 11 Arj 11 2. This is true for all schemes discussed 
and hence they are all sufficiently mass-conservative. 

The positively error rjmh indicates whether a given scheme guarantees positivity of the solution. UDS 
is truly positive, whereas QUICK is not. As a consequence, this scheme exhibits spurious oscillations. 
Owing to machine precision, the limiters do not completely avoid negative values, since limiters are not 
turned on exactly at the moment they should be. Even so, their convergence to machine precision is very 
fast, especially Minmod. Hence they are practically positive. 

4.2. Advection of scalar step profile by rotational velocityjield 

The next linear test case is the advection of a step profile by a rotational velocity field, proposed by 
Smith and HuttonI6 and particularly designed for testing convection schemes. The problem is described 
bY 

where Pe is the Peclet number and the flow field is given by 

u = 2y( l -2) ,  v = -2X(l-?). (43) 

The following boundary conditions are used: 

r j  = 1 +tanh[l0(2X+ l)], JJ = 0, -l<x<O, 
w+ = 0,  y=O.O<x<l ,  
r j  = 1 - tanh(lO), x = 1, O<y< 1, 
r j  = 1 - tanh(lO), y =  l , - l < x < l ,  
r j  = 1 - tanh(lO), x = -1, o<y<  1. (44) 

Computations are carried out on a uniform (x, y)  grid of 40 x 20 with Pe = lo6 and the results are 
given in Figure 9. It can be seen that Minmod leads to somewhat more smeared contour lines than 
QUICK and other monotone schemes, whereas UDS produces too much numerical diffusion, leading to 
a highly smeared solution. The wiggles in Figure 9 are produced by the plotting software. 

Figure 10 shows the performance of UDS, QUICK, Minmod, ISNAS and SMART by comparing the 
profiles at x = 0.0 obtained with these schemes. As expected, UDS is strongly affected by numerical 
diffusion and QUICK produces under- and overshoots, whereas other schemes are free from 
oscillations. Furthermore, ISNAS is less diffusive than Minmod but moderately more diffusive than 
SMART. Both ISNAS and SMART preserve the third-order accuracy of QUICK. 

Concerning the computational costs required on an HP 9000/735 workstation, results are given in 
Table 11. ISNAS requires about 20% more computation time than QUICK, whereas Minmod and 
SMART respectively consumed about 6% and 10% more time than ISNAS. 
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QUICK I 

I SMART 

Figure 9. Contour plots of scalar property obtained with several convection schemes 

4.3. Turbulentflow through a constricted tube 

The main motivation for constructing and employing the ISNAS scheme is to approximate convective 
transport of turbulence quantities, particularly k and E, very accurately while preserving positivity of k 
and E. Numerical experiments have shown that non-monotone higher-order schemes are prone to 
generate negative values of turbulence quantities, particularly in regions where the gradients of those 
quantities are relatively high. Negative values of k and/or E not only make the mathematical model 
physically meaningless but can also make the discretized equations highly unstable and hence prevent 
convergence to steady state. 

In this subsection we examine the sensitivity with respect to the accuracy with which turbulence 
convection is approximated using the UDS and ISNAS schemes. The inertia terms in the momentum 
equations have been approximated with central differences. The numerical framework as described in 
Section 3 has been applied to the prediction of turbulent flow through a tube with a sinusoidal 
constriction, as shown in Figure 1 1. This flow has been studied experimentally by Deshpande and 
Gidden~. '~  

The height of the duct is 50.8 mm and the Reynolds number based on that height and the average 
inlet velocity is 15,000. The height and base length of the constriction are iRo and 4R0 respectively, 
where Ro is the half-height of the duct. Owing to symmetry, only the lower half of the domain needs to 
be considered (i.e. y E [ - &, 01). The inlet profiles for the velocity and turbulence quantities were 
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Figme 10. Comparison between various convection schemes-profiles at x = 0 

specified at the plane x = - 4R0. Following Deshpande and Giddens,” at the inlet a filly developed 
power-law profile (n a 6.4) is assumed for the streamwise velocity: 

1/64 

u,=u,(l+;) 1 (45) 

where uo is the centreline velocity. For the turbulence quantities k and E the following inlet profiles are 
aSSUmed: 

Here IT is the turbulence intensity, taken to be 5%, and 1 is the mixing length given by 

1 = min(K(R, +y), 0.lRO). (47) 

In addition, symmetry and outflow conditions are imposed in the usual way. 
Grid dependence tests have been performed with four grids consisting of 50 x 20,75 x 30,100 x 60 

and 150 x 100 cells respectively. Figure 12 shows the 50 x 20 grid. The test focused primarily on the 
separation and reattachment lengths. The computed separation and reattachment lengths are presented 

Table 11. Measured computational costs for various convection schemes 
~~ ~ ~ ~ 

CPU time CPU per 
Scheme Iterations (s) iteration (s) CPU ratio 

UDS 7 1.53 0.22 1 .oo 
QUICK 17 4.36 0.26 1.18 
Minmod 10 3.28 0.33 1.50 
ISNAS 14 4.35 0.3 1 1-41 
SMART 23 7.80 0.34 1.55 
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+ xs - x, - 
Figure 1 1. Geometry of solution domain for constricted tube flow 

Figure 12. Typical gnd for constricted tube flow (50 x 20 cells) 

together with the measurements in Table 111. The standard k--E model gives an overpredicted separation 
length and underpredicted reattachment length. Furthermore, this table shows that no significant 
differences between the solutions obtained with UDS and ISNAS are found. The differences between 
the results obtained on the two finest grids are very small, suggesting that further mesh refinement is not 
necessary. Hence all subsequent computations were done with a 150 x 100 grid. With respect to the 
UDS and ISNAS schemes it appears that with At=0.005 s typically 445 and 435 time steps 
respectively were needed to obtain stationary solutions. The total CPU times were around 50 and 
64 min respectively on the HP workstation. Hence with respect to UDS the CPU time per time step 
corresponding to ISNAS is about 30% higher. 
In numerical experiments with this flow it was observed that the QUICK scheme gives rise to 

oscillations in sharp gradient regions, which lead to negative values of k and E .  Owing to non-linearities 
and coupling, these negative values tend to be enlarged, which eventually prevents convergence. Figure 
13 illustrates this divergence and indicates that the computation suddenly stops after 60 time steps. Note 
that the L2-norm on the change of the solution k between successive time steps is not the termination 
criterion used for obtaining stationary solutions but is only used to give a qualitative picture of the 
convergence behaviour of the calculation. The ISNAS scheme does not adversely affect the convergence 
behaviour. 

Figures 14-17 show the streamwise velocity and turbulence intensity predictions at two stations. The 
calculation is seen to yield relatively good agreement with the measurements, except with respect to the 
turbulence intensity.* Here again, solutions (velocities as well as turbulence intensities) obtained with 
UDS and ISNAS were found to be virtually identical. Apparently, the solutions are insensitive to the 
accuracy of the approximation of the convective terms in the k--E model, contrary to what is sometimes 
believed. A possible explanation is the fact that the convection mechanism is of minor importance to the 
balance of turbulent processes, in which production and dissipation rates are dominant. While this is 
true in most cases, there are circumstances in which convection of turbulent energy dominates, e.g. the 
turbulent confined co-flow jet in a duct, which will be discussed in the next subsection. 

Though the experimental data with respect to the velocity fluctuation dm were not available, the turbulence intensity i s  
estimated by assuming that dm = d-. 
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Table 111. Variation in separation and reattachment lengths with different grids and convection schemes 

Case 
~~ ~ ~~~ 

Scheme Grid Separation Reattachment 
X S l R O  X r I R o  

- 0.5 4.0 Experiment - 
Standard k-E UDS 50 x 20 1.17 2.90 

UDS 75 x 30 0.85 3.18 
UDS 100 x 60 0.59 3.61 
UDS 150 x 100 0.57 3.61 

Standard k-c ISNAS 50 x 20 1.19 2.52 
ISNAS 75 x 30 0.86 3.2 1 
ISNAS 100 x 60 0.59 3.61 
ISNAS 150 x 100 0.58 3.62 

+ . . . . . . . . . . . . . . .  I 

-. ........................ & 

............................................... 

............... ..: ....................... 

so 100 160 
mnnbudlhwl*p n 

4o  

Figure 13. Convergence history of turbulent energy k of first 150 time steps 
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Figure 14. Streamwise velocity profile at x / R o  = 2.0 
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Figure 16. Turbulence intensity profile at x / R o  = 2.0 

Figure 17. Turbulence intensity profile at x/& = 1 I .O 
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W ua 1 
Figure 18. Flow configuration and definitions 

4.4. Turbulent conjned co-Jow jet in a 2 0  planar duct 

A typical flow in which convection of turbulence is relatively large is a turbulent co-flow jet or wake, 
Examples are plane and axisymmetric wakes of self-propelled bodies and confined co-flow jets in ducts 
or diffusers. There is experimental evidence that for this type of flow the turbulence convection prevails 
and is in balance with the dissipation rate, whereas the production rate is quite small (see e.g. Reference 
18). This is also observed by Tennekes and Lumley,’’ for which they have examined the significance of 
several terms in the turbulent kinetic energy budget. 

The test problem considered here is a turbulent co-flow jet in a planar duct. What the present 
computations are primarily intended to demonstrate is that the solutions, in particular the turbulence 
quantities, are quite sensitive to the accuracy of the approximation of the convection terms in the k-E 
equations. A numerical study related to turbulent confined co-flow jets in a circular duct can be found in 
Reference 20, from which the specification and boundary conditions for this problem are taken and used 
in the present calculations. The geometry considered here is a symmetric planar duct with height DO and 
nozzle diameter do, as shown in Figure 18. In addition, UJ and Ua are the jet and ambient flow velocities 
respectively and UJ/U, = 3 1.49. Furthermore, Re = uJdo/v = 1-5 x lo’. Computations were performed 
with the standard high-Re k-6 model in conjunction with wall functions on three different uniform grids, 
namely 50 x 40,70 x 50 and 90 x 60 cells. Because of symmetry, computations are performed in half 
the domain only. 

Figures 19 and 20 provide a comparison of turbulent viscosity profiles arising from the UDS and 
ISNAS schemes, both at location x/Do= 1.875. These figures demonstrate that the tuhulence 
quantities are rather sensitive to the convection schemes on turbulence equations adopted. Moreover, 
Figure 19 reveals a significant difference in the predicted profiles of pt corresponding to UDS. With the 
70 x 50 mesh, grid-independent solutions for turbulent viscosity are achieved using ISNAS, whereas the 

0.006 1 I 1 I I I 1 I 1 

I 90x60, UDS 
-IDS 
IDS 

-- -- - 
- -  
I.-- 

0.001 - 7UX54 ( 50x40, I 
0 1 1 I 1 I I 1 

0 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 

YlDo 

Figure 19. Effect of grid refinement on nubdent Viscosity at */DO= 1.875 
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Figure 20. Effect of grid refinement on turbulent viscosity at x/Do = 1.875 

UDS solutions still had not reached the grid-independent stage. Thus ISNAS tends to minimize grid 
independence considerably. Moreover, like UDS, the ISNAS scheme does not exhibit unphysical 
oscillations. No negative turbulent energy or dissipation rate values are observed on all three grids. 

In contrast with UDS, ISNAS does not result in severe numerical diffusion as seen in Figures 19 and 
20, where the level of turbulent viscosity corresponding to UDS is lower than that of ISNAS. This can 
be explained as follows. In regions where shear stress is small, the production of turbulent energy and its 
dissipation rate are negligible. However, the dissipation terms in the transport equations of both k and E 

remain non-zero. These terms must be in balance with the transport mechanism, in particular the 
convective transport. Hence it is important to approximate the convection of turbulence quantities 
accurately. When any numerical diffusion is introduced in the convection term (by UDS for example), 
this leads to a too high dissipation rate E and, since E is a sink term in the k-equation, to too low levels of 
turbulent energy. As a consequence, since pt is proportional to P / E ,  this double-edged effect causes pt to 
become significantly too low. 

The calculations with UDS and ISNAS schemes on the 70 x 50 grid both took 1500 time steps to 
converge and consumed respectively 102 and 135 CPU minutes. Hence the CPU time of the ISNAS 
scheme is about 30% higher than that of UDS. 

5. CONCLUSIONS 

A formally third order accurate flux-limited scheme for the approximation of convective transport in 
the finite volume context has been formulated using Leonard's NV concept. Since this formulation is 
simple and compact, it can be quite easily implemented in existing finite volume codes by employing 
the deferred correction procedure. It has been applied to a wide range of test cases, among them linear 
problems with discontinuous and smooth solutions and non-linear turbulent flow problems. The 
proposed scheme (ISNAS) appears to be satisfactory in the sense that 

(i) it is oscillation fiee 
(ii) it is practically second-order accurate (but third-order accurate on uniform grids) 
(iii) it produces less numerical diffusion than Minmod but is a little more diffusive than SMART 
(iv) it is generally applicable and robust 
(v) the computational cost associated with the use of this scheme is modest: it requires about 30% 

more CPU time than the standard schemes (UDS and QUICK) but is cheaper than SMART. 
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The ISNAS scheme is suitable for approximation of advective transport in turbulence equations, e.g. 
the standard k--E model, whose solutions must not, for reasons of stability, have non-physical negative 
values. However, in some situations this scheme leads to results which are no more accurate than those 
obtained with the first-order upwind scheme. A possible explanation is the fact that in such 
circumstances the balance of turbulent processes is dominated by the production and dissipation 
terms and hence the convective transport term is of minor importance. However, this need not always be 
the case, as shown in the previous section, and so one should always be aware of the inaccuracy of the 
first-order upwind scheme. Hence it is worthwhile to approximate convective turbulence transport with 
a higher-order monotone upwind scheme. In conclusion, when come grids are unavoidable, 
particularly in 3D situations, the use of a higher-order monotone upwind scheme becomes necessary 
if accuracy has to be improved. 
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APPENDIX 

Consider a limited upwind scheme (assuming that u1 l ( i + l / 2 , j )  > 0; see Figure 1) 

with 

We show that for any limiter Y which satisfies Sweby's monotonicity principle and makes (48) second- 
order accurate the following is true: 

zl = the scheme (48) is third-order accurate, (50) 
r=l 

assuming that the grid is uniform. 
Suppose that the limited scheme (48) is third-order-accurate. We have 

Y ( r )  zz "(1) + Y'(I)(r - 1). (51) 

According to Sweby: for any limiter Y which makes the scheme monotone and second-order accurate 
the following condition must hold: 

Y(1) = 1. (52)  

Taylor expansion gives 



640 M. ZLTLEMA 

Substituting the above expansions and equations (51) and (52) in scheme (48) and demanding that the 
scheme be third-order accurate, it is easily found that 

Conversely, suppose the limiter Y makes the scheme (48) monotone and Y’( 1) = b. We also have 
Y(  1) = 1. Using Leonard’s normalized variable concept, it is possible to show that the scheme is third- 
order accurate. In terms of normalized variables, equation (48) becomes 

with 

This leads to 

from which is easily found that 

According to Leonard,* this is necessary and sufficient for third-order accuracy. 
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